Quadratic spline collocation method and efficient preconditioner for the Helmholtz equation with Robbins boundary conditions

نویسندگان

  • Wei-Hua Luo
  • Guo-Cheng Wu
چکیده

Numerical solutions of the Helmholtz equation with Robbins boundary conditions are researched using the quadratic spline collocation method. By reordering the unknowns, we obtain a 2×2 block linear system where the two diagonal sub-matrices are block tridiagonal. For the obtained linear system, we introduce a two-step preconditioner using the block polynomial preconditioner. Theoretical analysis shows this preconditioner can largely gather the eigenvalues. Numerical examples are presented to demonstrate our method from two aspects: testing the errors and checking the efficiency of the two-level preconditioner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Collocation Method with Modified Equilibrium on Line Method for Imposition of Neumann and Robin Boundary Conditions in Acoustics (TECHNICAL NOTE)

A collocation method with the modified equilibrium on line method (ELM) forimposition of Neumann and Robin boundary conditions is presented for solving the two-dimensionalacoustical problems. In the modified ELM, the governing equations are integrated over the lines onthe Neumann (Robin) boundary instead of the Neumann (Robin) boundary condition equations. Inother words, integration domains are...

متن کامل

Fast Fourier Transform Solvers and Preconditioners for Quadratic Spline Collocation

Quadratic Spline Collocation (QSC) methods of optimal order of convergence have been recently developed for the solution of elliptic Partial Differential Equations (PDEs). In this paper, linear solvers based on Fast Fourier Transforms (FFT) are developed for the solution of the QSC equations. The complexity of the FFT solvers is O(N2 logN), where N is the gridsize in one dimension. These direct...

متن کامل

An efficient method for the numerical solution of Helmholtz type general two point boundary value problems in ODEs

In this article, we propose and analyze a computational method for numerical solution of general two point boundary value problems. Method is tested on problems to ensure the computational eciency. We have compared numerical results with results obtained by other method in literature. We conclude that propose method is computationally ecient and eective.

متن کامل

Powell–Sabin splines with boundary conditions for polygonal and non-polygonal domains

Powell–Sabin splines are piecewise quadratic polynomials with a global C1-continuity, defined on conforming triangulations. Imposing boundary conditions on such a spline leads to a set of constraints on the spline coefficients. First, we discuss boundary conditions defined on a polygonal domain, before we treat boundary conditions on a general curved domain boundary. We consider Dirichlet and N...

متن کامل

A Preconditioned Conjugate Gradient Method for Nonselfadjoint or Indefinite Orthogonal Spline Collocation Problems

We study the computation of the orthogonal spline collocation solution of a linear Dirichlet boundary value problem with a nonselfadjoint or an indefinite operator of the form Lu = ∑ aij(x)uxixj + ∑ bi(x)uxi + c(x)u. We apply a preconditioned conjugate gradient method to the normal system of collocation equations with a preconditioner associated with a separable operator, and prove that the res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015